
Multiple Time Scale Chaos in a Schmitt Trigger Circuit

Thomas L Carroll
Code 6362, US Naval Research Lab

Abstract-- It is known that stray rf signals can produce nonlinear effects that disrupt the

operation of the circuits, but the mechanisms by which this disruption occurs are not well

known. In this paper, an emitter coupled Schmitt trigger circuit is driven with a high

frequency signal to look for disruptive effects. As the circuit makes a transition between

mode locked states (period 2 and period 3 for example), there is a region of chaos in

which the largest peak in the power spectrum is in between the mode locked frequencies,

and is not related to the driving frequency by an integer multiple. This chaos resembles

the chaos seen during a period adding sequence, except that it contains frequencies

ranging over many orders of magnitude, from the driving frequencies on the order of

megahertz, down to a few hertz. It is found that only a one transistor circuit is necessary

to produce this extremely broad band chaos, and true quasiperiodicity is not seen in this

circuit. The single transistor circuit is then simulated to confirm the frequency conversion

effects.

PACS 05.45.+a, 84.30.Sk

It has been discovered  mostly through trial and error that

electronic circuits, even those operating in the audio frequency range,

can be adversely affected by radiofrequency (rf) interference. In

digital circuits, it is believed that pn junctions in the circuit act as

diodes to rectify the rf signal, producing a relatively constant (dc)

offset that was not anticipated by the circuit designer. One way in

which this dc offset can disrupt circuit operation is to shift the level at



which a digital circuit shifts between the 1 and 0 states, causing a bit

error.

There are other mechanisms besides rectification by which an

rf signal can cause low frequency interference, but these have not

been thoroughly studied. If a circuit has multiple stable states, the

circuit can either spontaneously switch between these states, or be

forced to switch between them by an external rf signal. These effects

can result in a changing dc signal, which can disrupt circuit operation.

In this paper, I consider a different mechanism- very broad band

chaos. As the rf driven circuit makes a transition between 2 states of

different periodicities (period 2 to period 3, for example), there is an

intermediate chaotic state whose power spectrum is very broad band,

reaching down to very low frequencies. If I generate a time series by

strobing the circuit output with the drive signal, I see that in this

chaotic state, the peak frequency in the strobed time series signal is

related to the driving frequency by a number that may be irrational.

Introduction

It has been known for many years that stray rf signals can disrupt

the operation of some electronic circuits [1]. In much of the work to date,

an electronic system is exposed to rf radiation to see if disruption occurs.

Statistical analysis is common, but usually only the simplest physical

effects, such as thermal damage, or rectification of the rf signal, are

considered [1]. Existing theory is aimed mostly at predicting the levels of

electromagnetic fields in enclosures, while the mechanisms by which

circuits may be damaged or disrupted is usually discovered by experiment

only.



It is currently believed by many in the high power microwave

community that intentional electromagnetic interference is an increasing

threat [1]. Terrorists, criminals, or combatants may focus high power

microwave beams on targeted electronic systems. With this intentional

interference, the electromagnetic field levels could be much higher than

the levels seen from unintentional stray fields only.

In order to better understand the physical mechanisms that lead to

disruption, I study circuits with only a few pn junctions. A single pn

junction, when combined with an inductor, forms the much studied diode

resonator [2-8], which can produce period doubling and chaos. The diode

resonator has a resonance at a frequency 1 / 2! LC( ) , where C is the

diode capacitance and L is the value of the inductor. At rf frequencies on

the order of 1 GHz, the inductance L may be provided by the circuit

wiring alone, so the presence of pn junctions may cause unexpected high

frequency resonances in a circuit, leading to nonlinear effects.

A single diode resonator can produce period doubling and chaos,

but it does not produce signals with frequencies more than an order of

magnitude lower than the rf driving signal. In order to produce low

frequencies, a circuit more complicated than a single diode resonator is

necessary.

In previous work, it was shown that some transistor circuits may

have regions of multistable behavior. It was shown in a single transistor

amplifier that the presence of a large capacitor caused the amplifier to



slowly switch between 2 different states [9, 10], producing a dc signal

with a frequency 6 orders of magnitude lower than the rf signal that drove

the amplifier. In another paper, bistability was demonstrated in a digital

CMOS inverter circuit [11]. Sweeping the rf frequency across the bistable

region could produce a low frequency signal.

In this paper, I study a simple circuit that produces low frequency

signals without multistability. Previous work with coupled arrays of diode

resonators suggested that circuits similar to these coupled arrays might

produce complex signals, such as quasiperiodicity [12, 13]. In particular,

an emitter coupled Schmitt trigger circuit, which uses 2 transistors,

resembles a coupled diode array.

Schmitt Trigger

A Schmitt trigger is used to convert a time varying signal into a

square wave between 0 and 5 V, usually so that the signal can be used as

an input to a digital system [14]. Figure 1 is a schematic of one type of

Schmitt trigger, an emitter coupled Schmitt trigger.



Fig. 1. Emitter coupled Schmitt trigger. L = 100 mH, R1=R2=R3=R4= R5=1 k!.

Both transistors are type 2n2222.

In fig. 1, 2 inductors have been added to the circuit to reduce the

resonant frequency of the diode resonator part of the circuit. Normally

these frequencies are on the order of GHz, but digitizing at these

frequencies is expensive, so the inductors are used to shift the resonance to

a lower frequency. There may also be other effects at high frequencies,

such as stray capacitances, or inductance in the resistors, and the actual

inductance of the wires may not be known precisely, so shifting the

resonance to a lower frequency also allows the circuit to be better

characterized.

The Schmitt trigger circuit was driven with a sinusoidal signal V0

= A0sin("t) + B0 , where the frequency ranged from 500 kHz to 8 MHz,

and amplitudes from 0.5 V to 5 V. The driving signal was applied at the

point marked V0 in fig. 1, and the response of the circuit was measured at

the point marked V2 . The circuit response was complicated, but period

doubling, chaos, and low frequency effects were seen. Figure 2 shows 2



typical time series signals from the Schmitt trigger circuit that show low

frequency behavior.
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Fig. 2. Time series of Vout measured from the Schmitt trigger circuit. In (a), the

amplitude of the driving signal V0 was 5 V, and the frequency was 5.3 MHz. In (b),

V0 had an amplitude of 1 V and a frequency of 510 kHz.

In fig 2(a), the amplitude of the output signal varies irregularly.

This irregular variation appears as a low frequency signal. In (b), irregular

bursting is seen. Both of these low frequency effects produced broad band

behavior in which most of the energy was below 10 kHz. This type of low

frequency behavior was not seen in a single diode resonator circuit.

The parameter regions for which low frequency effects were seen

are plotted in Figure 3. The signal V2 was filtered with a low pass filter

with a break frequency of 10 kHz, and the rms amplitude of the filter

output was measured for different amplitudes and frequencies of the

driving signal V0.
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Figure 3. RMS amplitude of the low pass filtered output signal from the Schmitt

trigger circuit, for different driving amplitudes (A0) and frequencies. The largest

values are white, while the smallest values are black.

As fig. 3 shows, low frequency behavior occurs for several

different parameter regions in the Schmitt trigger circuit. This particular

circuit is difficult to analyze, since each inductor and each capacitor (2

internal capacitances per transistor) contributes a dynamical variable,

making the Schmitt trigger a 6 dimensional system. Analysis is simpler if

parts of the circuit that do not contribute to the low frequency behavior are

removed, so that the origin of this behavior is easier to understand.

Single Transistor Circuit

When circuit elements are removed from the circuit in fig. 1, it is

seen that the same type of low frequency behavior seen in the full circuit



can be produced by a circuit with only a single transistor, shown in Figure

4.



Fig 4. Single transistor circuit that shows low frequency behavior. L1 = L2 = 100

mH, R1 = 1 k!, R2 = 2 k!. V2 shows the location of the output voltage, while V0 is

the location where the rf signal was applied.
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Fig. 5. Output from the single transistor circuit, when the driving amplitude was 2.5

V and the driving frequency was 1.82 MHz. (a) is the driving signal, and (b) is the

output signal.

Figure 5 shows a typical output signal from the single transistor circuit. While the

output signal in fig. 5 roughly resembles a period doubled signal, the amplitude varies

irregularly, suggesting that it may be quasiperiodic or chaotic. This irregular variation

produces a low frequency signal.

Figure 6 compares the low frequency part of the power spectra of the output

signal from the single transistor circuit for 2 different driving frequencies. In 6(a), which

shows low frequency behavior, the driving amplitude was 1.0 V and the frequency was

2.8 MHz. In 6(b), in which no low frequency behavior was seen, the drive amplitude was

also 1.0 V, with a frequency of 2.3 MHz.
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Fig 6. (a) Low frequency power spectrum of the output from the single transistor

circuit with a driving amplitude of 1 V and a frequency of 2.8 MHz. (b) The same



for a driving frequency of 2.3 MHz. The structure seen in (b) all occurs at multiples

of 60 Hz, so it is most likely interference picked up in the electronics after the single

transistor circuit.

 The signals in fig. (6) were passed through a low pass filter to

eliminate aliasing problems that would be caused by sampling a high

frequency signal at a slow rate (60,000 samples/sec in this case). The filter

was isolated from the single transistor circuit by a 1 M! resistor, so the

signal amplitude has been reduced. The spectrum in fig 6(b) does show

some structure, but this was caused by 60 Hz interference.

The amplitude at any one frequency in the low frequency spectrum

in 6(a) is not large, but the low frequencies cover a broad band, so the total

power in the low frequency signal can be large.

In Figure 7, the regions of low frequency behavior for the single

transistor circuit are plotted, again by low pass filtering the output signal

V2 at 10 kHz and measuring the rms amplitude of the low pass signal.

54321
f (MHz)

5

4

3

2

1

A
 (

V
)



Fig 7. RMS amplitude of the low pass filtered output signal from the single

transistor circuit, for different driving amplitudes (A) and frequencies. The largest

values are white, while the smallest values are black.

Fig. 7 shows bands of low frequency similar to the bands seen in fig. 3, although the

overall scale seems to be shifted to slightly higher frequencies. Figures 6 and 7 show that

only one of the transistors in the Schmitt trigger circuit is necessary to produce the low

frequency effects.

Simulations

Numerical simulations are useful to understand the origin of the

low frequency behavior seen in the circuits and to confirm that some other

factor not characterized in the circuit (stray capacitance, for example) is

not affecting the observed behavior.

The single transistor circuit was simulated by these 4 differential

equations:

 

dV1
dt

=
!1

R1R2Cbe
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Resistor and inductor values are given in fig. 4. V1 and V2 are marked on

fig. 4. I1 is the current through inductor L1 , and I2 is the current through

inductor L2 . The currents Ic and Ib are given by the Ebers-Moll equations

[15]:
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IB = IE ! IC

                            (2)

where IC is the current flowing into the collector, IB is the current

flowing into the base, and IE is the current flowing out of the emitter. VCB

= V2-V1 is the collector-base voltage, VBE = V1-0 is the base-emitter

voltage, q is the charge of 1 electron, k is the Boltzman constant, T is the

temperature in Kelvins, and # is the fraction of current that flows from the

collector, through the base, and into the emitter (or in the reverse

direction). The fraction a is typically just below 1.0: for this simulation, a

value of 0.995 was used. The reverse current I0 was 10-9 A, a value

obtained from the data sheet for the transistor.

The transistor capacitance was modeled as a sum of a junction

capacitance and a diffusion capacitance, where the junction capacitance

was given by [16]

       CJ V( ) =
CJ 0( )

V ! Vb( )2 + b( )n/ 2
1 +

n
1! n

b
V ! Vb( )2 + b( )

" 

# 
$ 
$ 

% 

& 
' 
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        (3)

where Vb is the built-in voltage (approximately the turn on voltage)

for the junction, V is the voltage across the junction, and b and n may be

estimated by measuring junction capacitance as a function of V for V < Vb

. There is a common simple expression for the junction capacitance that

involves only the inverse of the square root of V – Vb [15], but the simpler

expression has a singularity at V = Vb , which is not physical and makes

the capacitance difficult to evaluate near V = Vb . Poon and Gummel [16]

derived the phenomenological expression for junction capacitance shown

in eq. (3) to closely match the inverse square root low for  V < Vb , but

without the singularity. The factors b and n are found by fitting the

measured capacitance vs. voltage curve for the base-emitter junction from



a real transistor. Poon and Gummel realized that for V > Vb , the

capacitance would be dominated by the diffusion capacitance shown in eq.

(4) below, so the specific value of eq. (3) for V > Vb was less important.

For these simulations, Vb = 0.66 V, b = 0.09 and n =0.08. The junction

capacitance at zero bias voltage was Cj(0) = 17 pF.

The other type of capacitance, the diffusion capacitance, was

described by [15]

                CD V( ) = CD 0( )e
qV
kT

! 
" # $ 

% & 
                                         (4)

where CD(0) = 10-18 F.

In the model of eqs. (1-4), the zero bias junction capacitance was

set to 17 pF. Using only the base-emitter capacitance, the resonant

frequency of the series resonant circuit is 1 / 2! LC( )  = 3.8 MHz.

Another possible series resonant circuit is the inductor L2 (in fig 4)

combine with the collector base and base emitter capacitances (which add

in series). The resonant frequency of this circuit was 5.46 MHz.

The model of eq. (1-4) was numerically integrated using a 4-th

order Runge-Kutta integration routine with a fixed time step. The time

step was initially set at 10-12 s until all transients died out, at which point it

was set to 10-10 s.

Figure 8 shows a typical waveform seen in the single transistor

simulation.
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Fig. 8. Time series signals for the single transistor simulation, for a driving

amplitude of 3.0 V and a frequency of 6.3 MHz. (a) shows the driving signal, while

(b) shows the variable V2.

The V2 signal can be seen to resemble the output voltage from the actual

transistor circuit plotted in fig. 5. The signal at times resembles a period

doubled signal, but the amplitude varies in an irregular fashion.



Figure 9 compares the low frequency part of the power spectra of

the output signal from the simulation for 2 different driving frequencies.

In 9(a), which shows low frequency behavior, the driving amplitude was

3.0 V and the frequency was 6.3 MHz. The driving power in 9(a) was

estimated by multiplying the driving signal V0 by the current through the

inductor L1, yielding an rms power of  1.3 mW.. Whether or not this

power could be achieved by actually irradiating a circuit would depend

on such factors as the physical size of the circuit, the power and antenna

configuration of the radiating system, its distance, and any shielding of

the circuit.  In 9(b), in which no low frequency behavior was seen, the

drive amplitude was also 3.0 V, with a frequency of 3.0 MHz.
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Fig 9. (a) Low frequency power spectrum of the output from the single transistor

simulation with a driving amplitude of 3 V and a frequency of 6.3 MHz. (b) The

same for a driving frequency of 3.0 MHz.

The signals in fig. (9) were passed through a low pass filter to

eliminate aliasing problems that would be caused by sampling a high

frequency signal at a slow rate ( 105 samples/sec in this case).

Figure 10 shows the regions of low frequency behavior seen in the

simulation of the single transistor circuit. Fig. 10 was produced by low

pass filtering the V2 variable from the simulation and plotting the rms

amplitude of the resulting low frequency signal. As in the actual circuit,

the low frequency power was spread over a broad band of frequencies.

108642
f (MHz)

4

3

2

1

A
 (

V
)

Fig. 10. RMS amplitude of the low pass filtered output signal from the simulation of

the single transistor circuit, for different driving amplitudes (A) and frequencies.

The largest values are white, while the smallest values are black.



Comparing fig. 10 to fig. 7 from the experiment, the low frequency

behavior in the simulation also occurs in discrete bands in parameter

space. The bands appear to have some symmetry about 6 MHz, which is

close to the resonant frequency of the inductor L2 combined with the

collector base and base emitter capacitances.

Theory

The decision to study a Schmitt trigger circuit was motivated by its

similarity to a coupled diode array, which was shown to exhibit

quasiperiodicity [13]. Subsequently, it was shown that quasiperiodicity

could be a product of symmetrically coupled identical period doubling

systems [12]. The single transistor circuit above contains 2 back to back

pn junctions (the transistor), each of which is in series with an inductor, so

the single transistor circuit resembles 2 coupled diode resonators.

The coupling between the 2 diode resonators is not symmetric,

however, and so quasiperiodicity is not present in the single transistor

circuit. The coupling is actually rather complex and nonlinear, depending

on the voltages across the transistors, so it is not easy to write the

equations for this system (eq. 1-4) as 2 diode resonators with coupling.

There do exist in this system however forms of chaos that superficially

resemble quasiperiodicity, in that the dominant frequency in the chaotic

state is not related to the driving frequency by any integer.

In Figure 11, the value of the output signal V2 from the simulation

was recorded each time the driving signal V0 crossed 0, in the positive or



negative direction. The power spectrum of this strobed signal was

calculated for a driving amplitude A0 = 2.0 V and 3 different frequencies:

2.5 MHz (11(a)), 4.5 MHz (11(b)), and 5.125 MHz (11(c)).
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Fig 11. Power spectrum of the strobed V2 signal from the simulation for a driving

amplitude of 2 V. The frequency axis fn is normalized by the driving frequency. (a)

is a period doubled state seen for a driving frequency of 2.5 MHz, (b) is a chaotic

state seen for a driving frequency of 4.5 MHz, and (c) is a period 3 state seen for a

driving frequency of 5.125 MHz.

Fig 11(a) corresponds to a period doubled state, as can be seen by

the large peak at fn = 0.5, half the driving frequency. Likewise, fig 11(c)

shows a period 3 state, with a peak at fn = 0.33. Fig. 11(b) shows the



strobed spectrum for a chaotic state. The peak frequency in (b) is at fn =

0.44788, which appears to correspond to a non-integer divisor of the

driving frequency. It is when the system is in the chaotic state seen in Fig

11(b) that the low frequency behavior is seen. The transition between Fig.

11(a) and Fig. 11(c) is a period adding transition, which is quite well

known [17], except that the standard systems in which the period adding

sequence is studied (such as the circle map) do not contain the very broad

range of frequencies seen in this work.

 Figure 12 a map of the state corresponding to the dominant

frequency in the strobed power spectrum for different driving amplitudes

and frequencies.
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Figure 12. Periodicity of the V2 signal from the simulation of the single transistor

circuit, for different driving amplitudes (A0) and frequencies.

Fig. 12 shows regions where period 1, 2, 3, or 4 behavior dominates.,

similar to the standard period adding sequence seen in systems such as the

circle map [17]. Unlike the circle map, the chaos seen in the single

transistor Schmitt trigger circuit contains frequencies ranging from the

driving frequency all the way down to dc.

A more detailed picture may be generated by taking a slice through

figs. 10 and 12 at the driving amplitude of 3 V. Figure 13 shows this slice,

along with the largest Lyapunov exponent for the simulation.
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Fig. 13. (a) shows the rms amplitude of the low pass filtered signal from the

simulation of the single transistor circuit, (b) shows the dominant periodicity based

on a strobed time series, and (c) shows the largest Lyapunov exponent.

In fig. 13, it can be seen that parameters for which the low frequency

signal is large ( in 13(a)) correspond to regions where the dominant

periodicity does not correspond to a simple integer ratio (13(b)). A similar

result was seen for the circuit experiments, although the plot was noisier..

The largest Lyapunov exponent was also calculated and plotted in (c). The

Lyapunov exponent shows that the regions of non-integer periodicity

(where the large low frequency signal appears) are chaotic, and not

quasiperiodic. In a quasiperiodic state, a system has 2 zero Lyapunov

exponents [18]. The driving signal V0 contributes one 0 exponent, but the

largest Lyapunov exponent from the model of eqs. (1-4) is never 0 (see fig

13(c)), so at most one Lyapunov exponent is 0, ruling out quasiperiodicity

for the single transistor circuit.

Conclusions

The single transistor circuit described in this paper was not much

more complicated than the diode resonator, but the dynamics was

considerably more complex. Although the original goal was to model a

Schmitt trigger, these sort of dynamics could appear in other transistor

circuits in which rf energy managed to leak into the power supply leads.

The single transistor circuit above was analogous to a pair of

coupled diode resonators. If the resonators are symmetrically coupled, it is



know that quasiperiodicity exists. In this case, the coupling between diode

resonators was not symmetric, and a very broad band form of chaos was

seen. The chaos in this circuit occurred during period adding transitions,

but the chaos in this circuit covered a much broader band of frequencies

than the chaos typically seen during a period adding sequence [17]. It

seems highly likely that this type of chaos could be rather common, but

very few previous researchers have looked at power spectra over such a

broad range, so the extremely broad band nature of the chaos was

probably not noticed.
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